Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Inflammopharmacology ; 30(5): 1569-1596, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1877878

ABSTRACT

BACKGROUND: Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM: The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS: Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3ß, which could be useful in controlling the microbiota. CONCLUSION: Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.


Subject(s)
COVID-19 , Melatonin , Multiple Sclerosis , Adjuvants, Immunologic , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Catalase/metabolism , Estrogens/pharmacology , Estrogens/therapeutic use , Female , Glutathione , Glutathione Peroxidase/metabolism , Humans , Inflammasomes , Male , Melatonin/pharmacology , Melatonin/therapeutic use , Multiple Sclerosis/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , SARS-CoV-2 , Superoxide Dismutase/metabolism
2.
Am J Obstet Gynecol ; 226(2S): S844-S866, 2022 02.
Article in English | MEDLINE | ID: covidwho-1705227

ABSTRACT

Preeclampsia is one of the "great obstetrical syndromes" in which multiple and sometimes overlapping pathologic processes activate a common pathway consisting of endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. This article reviews the potential etiologies of preeclampsia. The role of uteroplacental ischemia is well-established on the basis of a solid body of clinical and experimental evidence. A causal role for microorganisms has gained recognition through the realization that periodontal disease and maternal gut dysbiosis are linked to atherosclerosis, thus possibly to a subset of patients with preeclampsia. The recent reports indicating that SARS-CoV-2 infection might be causally linked to preeclampsia are reviewed along with the potential mechanisms involved. Particular etiologic factors, such as the breakdown of maternal-fetal immune tolerance (thought to account for the excess of preeclampsia in primipaternity and egg donation), may operate, in part, through uteroplacental ischemia, whereas other factors such as placental aging may operate largely through syncytiotrophoblast stress. This article also examines the association between gestational diabetes mellitus and maternal obesity with preeclampsia. The role of autoimmunity, fetal diseases, and endocrine disorders is discussed. A greater understanding of the etiologic factors of preeclampsia is essential to improve treatment and prevention.


Subject(s)
Pre-Eclampsia/etiology , Pre-Eclampsia/physiopathology , Female , Humans , Pregnancy
3.
J Funct Foods ; 87: 104850, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1509997

ABSTRACT

Most COVID-19 cases are mild or asymptomatic and recover well, suggesting that effective immune responses ensue, which successfully eliminate SARS-CoV-2 viruses. However, a small proportion of patients develop severe COVID-19 with pathological immune responses. This indicates that a strong immune system balanced with anti-inflammatory mechanisms is critical for the recovery from SARS-CoV-2 infections. Many vaccines against SARS-CoV-2 have now been developed for eliciting effective immune responses to protect from SARS-CoV-2 infections or reduce the severity of the disease if infected. Although uncommon, serious morbidity and mortality have resulted from both COVID-19 vaccine adverse reactions and lack of efficacy, and further improvement of efficacy and prevention of adverse effects are urgently warranted. Many factors could affect efficacy of these vaccines to achieve optimal immune responses. Dysregulation of the gut microbiota (gut dysbiosis) could be an important risk factor as the gut microbiota is associated with the development and maintenance of an effective immune system response. In this narrative review, we discuss the immune responses to SARS-CoV-2, how COVID-19 vaccines elicit protective immune responses, gut dysbiosis involvement in inefficacy and adverse effects of COVID-19 vaccines and the modulation of the gut microbiota by functional foods to improve COVID-19 vaccine immunisations.

4.
Nutrients ; 13(8)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1430928

ABSTRACT

Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.


Subject(s)
Bacterial Physiological Phenomena , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Taste Perception , Animals , Antineoplastic Agents/therapeutic use , Bariatric Surgery , COVID-19/physiopathology , Diet , Dysbiosis/physiopathology , Feeding Behavior , Hormones/metabolism , Humans , Inflammatory Bowel Diseases/physiopathology , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, G-Protein-Coupled/metabolism , Taste , Taste Buds/physiology , Toll-Like Receptors/metabolism
5.
Med Hypotheses ; 154: 110661, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1340767

ABSTRACT

The world is currently facing the COVID-19 pandemic that is taking a heavy toll on several countries. While many infected patients have a good prognosis, in some cases the progression can be serious and even lead to death. The commonly seen complications are a cytokine storm and multi-organ failure that require intensive care. The mortality of critically ill patients depends on age, sex, immune state or co-morbidities. There is an urgent need to discover a biomarker to identify early on patients at risk of developing serious complications and to find an effective treatment that could prevent disease progression and critical states. Recent investigations have pointed to the possible contribution of intestinal dysbiosis to the pathophysiology of COVID-19. Herein, we hypothesize that butyrate, a short-chain fatty acid initially produced by the gut microbiota, could be administered as supportive therapy to prevent immune system activation and disease progression.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Fatty Acids, Volatile , Humans , Pandemics , SARS-CoV-2
6.
Pathogens ; 10(7)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1308389

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global concern. Immunoglobin A (IgA) contributes to virus neutralization at the early stage of infection. Longitudinal studies are needed to assess whether SARS-CoV-2-specific IgA production persists for a longer time in patients recovered from severe COVID-19 and its lasting symptoms that can have disabling consequences should also be alerted to susceptible hosts. Here, we tracked the anti-SARS-CoV-2 spike protein receptor-binding domain (RBD) antibody levels in a cohort of 88 COVID-19 patients. We found that 52.3% of the patients produced more anti-SARS-CoV-2 RBD IgA than IgG or IgM, and the levels of IgA remained stable during 4-41 days of infection. One of these IgA-dominant COVID-19 patients, concurrently with IgA nephropathy (IgAN), presented with elevated serum creatinine and worse proteinuria during the infection, which continued until seven months post-infection. The serum levels of anti-SARS-CoV-2 RBD and total IgA were higher in this patient than in healthy controls. Changes in the composition of the intestinal microbiota, increased IgA highly coated bacteria, and elevated concentration of the proinflammatory cytokine IL-18 were indicative of potential involvement of intestinal dysbiosis and inflammation to the systemic IgA level and, consequently, the disease progression. Collectively, our work highlighted the potential adverse effect of the mucosal immune response to SARS-CoV-2 infection, and that additional care should be taken with COVID-19 patients presenting with chronic diseases such as IgAN.

7.
J Clin Med ; 10(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1288930

ABSTRACT

The gut microbiota is well known to exert multiple benefits on human health including protection from disease causing pathobiont microbes. It has been recognized that healthy intestinal microbiota is of great importance in the pathogenesis of COVID-19. Gut dysbiosis caused by various reasons is associated with severe COVID-19. Therefore, the modulation of gut microbiota and supplementation of commensal bacterial metabolites could reduce the severity of COVID-19. Many approaches have been studied to improve gut microbiota in COVID-19 including probiotics, bacterial metabolites, and prebiotics, as well as nutraceuticals and trace elements. So far, 19 clinical trials for testing the efficacy of probiotics and synbiotics in COVID-19 prevention and treatment are ongoing. In this narrative review, we summarize the effects of various approaches on the prevention and treatment of COVID-19 and discuss associated mechanisms.

8.
Front Mol Biosci ; 8: 647508, 2021.
Article in English | MEDLINE | ID: covidwho-1207702

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented threat to the human health. A close association of the digestive tract is implied by the high frequency of gastrointestinal syndromes among COVID-19 patients. A better understanding of the role of intestinal microenvironment in COVID-19 immunopathology will be helpful to improve the control of COVID-19 associated morbidity and mortality. This review summarizes the immune responses associated with the severity of COVID-19, the current evidence of SARS-CoV-2 intestinal tropism, and the potential involvement of gut microenvironment in COVID-19 severity. Additionally, we discuss the therapeutic potential of probiotics as an alternative medicine to prevent or alleviate severe COVID-19 outcome.

SELECTION OF CITATIONS
SEARCH DETAIL